Course Code	Credit Hours
CE-215	2-1

Course Description

This course is designed to give advanced knowledge of fluid statics and fluid dynamics. The aim is to give the perception of the governing principles of pipe flow problems and pipe network design salient features. Further, fluid flow in hydraulic machines, especially roto-dynamic machines is treated in this course. Open Channel flow is also studied in this course. The ideas and concepts are further utilized to be implemented on designing different hydraulic structures and hydraulic machinery.

Text Book:

- 1. J. F. Douglas, J. A. Swaffield "Fluid Mechanics" Fourth Edition.
- "A Textbook of Hydraulics, Fluid Mechanics and Hydraulic Machines" by R.S. Khurmi.
- "Fundamentals of Fluid Mechanics" by Munson, B.R, Young, D.F, and Okiishi,
 T.H, John Wiley & Sons Inc.
- 4. E. John Finnemore and Joseph B. Franzini "Fluid Mechanics with Engineering Applications" 10 th Edition.

Reference Book:

- 1. Streeter, Wylie, Bedford "Fluid Mechanics" Ninth Edition
- Dr Andrew Sleigh "An Introduction to Fluid Mechanics" May 2001 (School of Civil Engineering, University of Leeds)
- 3. R E. Featherstone "Civil Engineering Hydraulics" Third Edition

Prerequisites :

CE-251 Fluid Mechanics.

	Without Project	With Project/Complex
	(%)	Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25
Project	-	5-10

ASSESSMENT SYSTEM FOR THEORY

End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assessment/ Viva	20%

<u>Teaching Plan</u>

Week No	Topics/Learning Outcomes
	Hydrodynamics Review
	Ideal and real fluids
	Differential equation of continuity
	 Rotational and irrotational flow
1-2	 Stream function and velocity potential function
	Brief description of flow fields
	 Orthogonality of streamlines and equipotential lines
	Flow net and its limitations.
	Different methods of drawing flow net
	Steady Flow through Pipes
	Type of flows
	Laminar and turbulent flow in circular pipes, semi empirical theories of
	turbulence
	Type of losses in pipes
	General equation for friction
2.6	 Velocity profile in circular pipes, pipe roughness
3-0	Nukuradse's experiments
	Darcy-Weisbach equation
	Friction factor, Colebrook & Haaland equations and Moody's diagrams
	Minor losses
	Pipe flow problems.
	 Darcy's friction versus fanning friction factor
	Branching pipes
7-8	Flow around immersed bodies
	Lift and drag force.

	Boundary layer along smooth flat plate
	Thickness of boundary layer, shear stresses and velocity distributions
	• Types of boundary layers (laminar, transitioning, and turbulent)
	Friction drag coefficient
9	Mid Semester Exam
	Impact of Jets
	Impulse momentum principle
10	Force of jet on stationary flat and curved plates
	Force of jet on moving flat and curved plates
	Forces on plumbing fittings
	Water Turbines
	Types of turbines
	Impulse and reaction turbines
11-12	Momentum equation applied to turbines.
	Specific speed
	Turbine characteristic curves
	cavitation and operation
	Centrifugal Pumps
	• Types
13	Classifications
10	Construction features, operation, and efficiencies
	Maximum suction lift
	Specific speed and characteristic curve
	Reciprocating Pumps
	• Types
14	Construction features
	 Single acting and Double acting Reciprocating pumps
	 Coefficient of discharge and slip of the pump.
	Sum of heads in single acting reciprocating pumps
15-16	Introduction to related software
12-10	TURBNPRO software application
17-18	End Semester Exam
Practical	

Experiment No	Description
1	To measure the head loss (h_L) in a pipe of uniform diameter (d) and to
	investigate the critical Reynolds Number, relationship between hydraulic
	gradient and velocity of flow and relationship between friction factor and
	Reynolds Number.
2	To verify the 'Impulse Momentum Principle' for a jet of water striking on
	90°, 120° & 180° deflectors and to investigate the effect of velocity of flow
	on impulse force of the jet for various deflectors.
3	To make the study of the 'Pelton Wheel' and 'Turgo Impulse Turbine.
4	To perform experiment on Pelton Wheel and hence to plot its
	characteristic curves.
5	To make the study of Francis Reaction Turbine.
6	To make the study of Double Stage Centrifugal Pump
7	To perform experiment on "Double Stage Centrifugal Pump" and hence
	to plot its Characteristic Curves.
8	To perform experiment on the "Double Acting Reciprocal Pump" and to
	determine co-efficient of discharge and Slip of the Pump.